a2 United States Patent
Kim

US009063659B2

US 9,063,659 B2
Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR DATA
SECTOR CLUSTER-BASED DATA
RECORDING

(75) Inventor: KiWoong Kim, Gunpo-si (KR)

(73) Assignee: Seagate Technology LL.C, Cupertino,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 19 days.

(21) Appl. No.: 13/459,012

(22) Filed: Apr. 27, 2012

(65) Prior Publication Data
US 2013/0027802 Al Jan. 31, 2013

(30) Foreign Application Priority Data

Apr. 27,2011 (KR) oo 10-2011-0039713

(51) Imt.ClL
GI11B 20/12
GO6F 3/06

(52) US.CL
CPC GO6F 3/0611 (2013.01); G11B 20/1217

(2013.01); G11B 2020/1288 (2013.01); G11B
2220/2516 (2013.01); GOGF 3/064 (2013.01);
GO6F 3/0676 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(2006.01)
(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,434,991 A *
7,440,221 B2
7,982,994 Bl
8,179,627 B2

7/1995 Maedaetal. 711/112
10/2008 Tsuchinaga et al.

7/2011 Erden

5/2012 Chang

8,270,256 Bl 9/2012 Juang et al.
2003/0221095 Al* 11/2003 Gauntetal. 713/1
2004/0047616 Al* 3/2004 Uchiumi et al. .. 386/111
2004/0179286 Al* 9/2004 Yang ... 360/51
2007/0030588 Al* 2/2007 Tsuchinaga et al. 360/77.08

2007/0122106 Al*
2010/0232049 Al*
2011/0085266 Al 4/2011 Kanai

2011/0222186 Al 9/2011 Itakura

2011/0292533 Al* 12/2011 Nittaetal. ... 360/31
2011/0292545 Al 12/2011 Katada

2012/0060073 Al 3/2012 Itakura

2012/0069466 Al 3/2012 Okamoto

2012/0082019 Al 4/2012 Harigae

2012/0099216 Al 4/2012 Grobis

2012/0162808 Al 6/2012 Masuda

2012/0194937 Al 82012 Tagami

OTHER PUBLICATIONS

. 386/46

5/2007 Ohnishi
e 360/55

9/2010 Kompella et

Garth Gibson, Directions for Shingled-Write and Two-Dimensional
Magnetic Recording System Architectures: Synergies with Solid-
State Disks, Carnegie Mellon University, May 2009, pp. 1-2, Pitts-
burgh, US.

* cited by examiner

Primary Examiner — Wayne Young

Assistant Examiner — Mark Fischer

(74) Attorney, Agent, or Firm — Cesari & Reed LLP; Kirk A.
Cesari; Christina W. Best

(57) ABSTRACT

Methods and apparatuses for data sector cluster-based data
recording are disclosed. In one embodiment, an apparatus
may comprise a processor configured to receive a write
request containing host data for writing to a target location of
a data storage medium. A target location may comprise one or
more clusters, where a cluster may be multiple sequentially-
numbered data storage addresses of the data storage medium.
The processor may write at least one cluster of the target
location with host data and dummy data pursuant to the write
request, dummy data being arbitrary data written to fill data
storage addresses in the target location not written by host
data.

19 Claims, 24 Drawing Sheets

U.S. Patent Jun. 23,2015 Sheet 1 of 24 US 9,063,659 B2

 1000A
470
- 2000 110
180 e PTOCESSOF
HO_SE Host .
Device [(== e 140 150
BQGQ Storage Storage
- - | ge
~s—we RAadium el aedium
F
120
= ROM
-130
-l RAM

FIG. 1A

U.S. Patent Jun. 23,2015 Sheet 2 of 24 US 9,063,659 B2
- 1000A
170
2000 110
480 oo Processor
Host 3 Host
Device | T ; ”””””””” T VE - //1 40 o 150
w0 Siorage Storace
Medium = E}te:ji?r;
i
- 120
186
o - ROM
Nonvoiatile
- Memory s
L Davics 139
"""""""""""""""" RAM

FIG. 1B

U.S. Patent

Jun. 23, 2015 Sheet 3 of 24 US 9,063,659 B2
APPLICATION 220
& |
¥
coMy-
b RTOS 110A
({110-1)
COL M CCM SCM
(110-2) (110-3) | (110-4) (110-5)
T -~ R \
180A - Ta20 430, 200 . 210
Lt 1 e 1 L 1 LR 1 h 1
DISK ROM RAM 'CHANNEL = SERVO
CODRE OBJECT 1 00T IMAGE DATE AREA
| |
CODE OBJECT 2 PACKED RTOS IMAGE | LOADED CODE OBJECT
|
CODE OBJECT 3 UNPACKED RTOS IMAGE
CODE OBJECT N

FIG. 2

US 9,063,659 B2

Sheet 4 of 24

Jun. 23, 2015

U.S. Patent

FIG. 3

US 9,063,659 B2

Sheet 5 of 24

Jun. 23, 2015

U.S. Patent

Vv 'DId
., - e, oo Frentilg)
W Wed S
0Ly os% ot
JCSSHO0k)
18AUG
> - e P
WO WOA
098 oey 0 ovy
\ JBULBUD Ao o] JEHHAURY 8] oo \ | ‘f
IS0 W ,/ o
A I [N
agy 0Ty 0Ly eb)
YOO0L

US 9,063,659 B2

Sheet 6 of 24

Jun. 23, 2015

U.S. Patent

somed ,
fowspy | 8% 'Oid
QBIoAUCN |
ogy— !
“““““““““ A
e e - M\%‘m
“““““““““ — A
DLy - oGy 0g
JOSS8ICG
WO e - Nw:\m ““““““““““““““““““““““
. AT /
099 - OEy - Ovy—
aoeUsy . ..v?mcmm%cd?mi‘
150 = R
““““““““ Mﬂl‘l}}l‘ll i
{8y — Oiv—
H0001

U.S. Patent Jun. 23,2015 Sheet 7 of 24 US 9,063,659 B2

- 801 - 802 - 803 -804

Burst
Preamble | SAM/SIM Gray Code (AB.C.D)

FIG. 8

| TRACK N-1
I TRACK N
,,,,,,,,, TRACK N+1

FiG. 7

TRACK N-1

TRACK N
TRACK N+1

FiG. 8

U.S. Patent Jun. 23,2015 Sheet 8 of 24 US 9,063,659 B2

o~ :

a davi pleng

Fod O iy ea!
1 o o= 9
- ; o
. = = i‘i‘“

e NOBI{ piBnD

J
N \\ —
- ;) N
WORI] DIBNG o
- \ . T / =
-
3) J// \\} ’?“'i
5 < HORS] pEnD o
N W Lo S >
L - 7 Lo
T vomlp pieng o
o :\ ! >

U.S. Patent Jun. 23,2015 Sheet 9 of 24 US 9,063,659 B2

Logical Band

» Virtual Band

Zm:sm Zoned
0 t 2 3 k1 K K1 k2
2 3 7 K Q1
0 1 G Q+2
FIG. 10
430110} 470(130}
Processor RAM
- 430-1 4701

Address mapping

Cluster alignment information {meta data)

management processor

4302
Address mapping information — 470-2
management processor
- 430-3 Readiwrite dala

Addrass Convearsion
Frocassor

FIG. 11

U.S. Patent Jun. 23,2015 Sheet 10 of 24 US 9,063,659 B2

(LBA, 8IZE)
510

Cluster-based alignment
detection unit

540

¥

Dummy write area calculation unit

. 530
Address mapping information Addrgss
. T =~ mapping
searching unit . .
information

540

¥

Dummy pattern generation unit

I o 550
Write area changing unit
(LBA', SIZE)
}
Address conversion processor Address conversion processor
{(LBA, SIZE) {(LBA', SIZED

FIG. 12

U.S. Patent Jun. 23,2015 Sheet 11 of 24 US 9,063,659 B2

- 430-3A
Command 200 First Frocessor
, 430-38
, 43038
Second Processor et—em Addrgss E\/i{:fppmg
| information
- 430-3C
Third Procsssor """ = Storage Medium
FIG. 13
P2 P1
133 132 131
/ ¥ ! 3)
Garbage Qusue Allocation Qusue Free Queue
]
P3

FIG. 14

U.S. Patent Jun. 23,2015 Sheet 12 of 24 US 9,063,659 B2

(Start
"""""""""""" = lswiite command received? o 101
;T“:(es
e st
Detect cluster-based
“':1\\§Iignment state for first area designated by
. writecommand

§/First state

¥

Calculate address information for the second area £103
required for cluster-based alignment

T 8104
=t Does address R Ve
=<____information for second area exist in address = e
—-.__mapping information? " 3 3108
i Write data only in the first area |
- No designated by the write ‘
| command

%
Write data in the first area in response to the write
command and write a dummy pattern in the second | — S4105
area

FiG. 15

U.S. Patent Jun.23,2015 Sheet 13 of 24
"i\\ S?‘QE)
,, S T 8201
Is start position of T Ne

US 9,063,659 B2

_ first area aligned in
- unitsof clusters?

Yes
S e 8202
Is end position Yes
of first area aligned in
units of clusters?

ii\io
¥

First state

(8103)

FIG. 18

¥

Second siate

(51086)

U.S. Patent Jun. 23, 2015

Sheet 14 of 24

T S301

Is start position of
first area aligned in

No

US 9,063,659 B2

- units of clusters?

' Yas

/”i\

T 8302

Is end position
of first area aligned in

e No

T~ unitsof clusters?

Yas
¥
Second siale

(5108}

FiG. 17

§
First siate

(8103)

U.S. Patent Jun. 23,2015 Sheet 15 of 24 US 9,063,659 B2

s102
o 5401
Is end position of /

first area aligned in

8402

< of first area aligned in

First state

(8103)

FiG. 18

~—__ units of clusters?

7 Is start position

units of clusters?

Add dummy pattern to data to be written

¥

Modify write command so as to include first
area and second area

¥

Execute modified write command

¥
Second stale

(51086)

— S501

— 8502

— 8501

U.S. Patent Jun. 23,2015 Sheet 16 of 24 US 9,063,659 B2

/""0 \\
St
H
Determine LB corresponding to LBA S8
designated by write command
T 8802
" Does VB allocated to determine ~__N°
" theexistenceof LB?
E Yes
8803 3 $5G4
(////Does VA allocatable toNO 77777777777777 __ Allocate new VB based on
. allocated VB exist? physical zone
Yes
i
Allocate VA to LBA 8805
¥
Convert VA into CHS information — S8086
¥
Execute access based
on CHS information | 5607
¥
Execute write - S608
N S
End J

U.S. Patent Jun. 23,2015 Sheet 17 of 24 US 9,063,659 B2

LB NO VB NO LA VA

2 199
0 0 94

1
2 3 130
7 198

3
155

K-1
K 149

K
45

FIG. 21

US 9,063,659 B2

Sheet 18 of 24

Jun. 23, 2015

U.S. Patent

661 YA PUH

Oideely

AR

LMoBl]

W

mw

8%

/595 g5

1221

g €5

LS

~

0 g/

/

O VA VER

U.S. Patent Jun. 23,2015 Sheet 19 of 24 US 9,063,659 B2

LBANO VA
g g
1 1
2 2
3 3
4 4
5 5
& &
7 7
8 &
8 g
10 86
1 &7
12 88
13 89
14 a0
15 o1
16 g2
17 83
18 94
20 15
21 16
50 38
51 38
58 47

FIG, 234

U.S. Patent

Jun. 23, 2015 Sheet 20 of 24
LBA SCN VA
g 10 0
10 8 86
20 2 15
50 10 38
FIG. 238
B R : R cP
DATA
A1 _
FIiG. 24
N R i P P N
DATA
L‘ Al : NAE N
FIG. 25A
B P j CP - cP
DATA
Al A2

FIG. 258

US 9,063,659 B2

VB O

U.S. Patent

Jun. 23, 2015 Sheet 21 of 24
. ¢eP . cP P
DATA
A2 A1
FIG. 26A
- CP CP oGP
DATA
A
FIG. 268
~cp cP . CP
DATA
A2 Al oAz
FIG. 27A
- CP | CP | CP
DATA
A

FIG. 278

US 9,063,659 B2

U.S. Patent Jun. 23,2015 Sheet 22 of 24 US 9,063,659 B2

Start VA QO VB O
80 88 96
104
g
FIG. 28A
End VA 199
Start VA G VB O
80 88 g8 104
|
£1G. 288 |

End VA 188

U.S. Patent Jun. 23,2015 Sheet 23 of 24 US 9,063,659 B2

Program provision
terminal &40
/ . V//’ ;\\v) \‘\
)
Network N
// o 62@
/k |
\\ B o
N~
Host PC 83D
§
Storage Device ——BAD

Fils, 28

U.S. Patent

Jun.

23,2015 Sheet 24 of 24

Start

US 9,063,659 B2

Connect {o program
provision terminal

%

Request cluster alignment
management program

%

Download cluster alignment
management program

703

%

Execute cluster alignment
management program

-~ 5704

US 9,063,659 B2

1
METHOD AND APPARATUS FOR DATA
SECTOR CLUSTER-BASED DATA
RECORDING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. §119(a) of
Korean Patent Application No. 2011-0039713, filed on Apr.
27, 2011, the entire disclosure of which is hereby incorpo-
rated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus for
writing data on a storage medium, and more particularly, to a
method and apparatus for writing data in a storage device, by
which a storage medium is accessed by using address map-
ping information.

2. Background of the Invention

A disk drive is a type of storage device that contributes to
the operation of a computer system by writing or reading data
onor from a storage medium in response to a command issued
from a host machine. A variety of writing methods are being
studied in order to improve the recording density of the disk
drive. Moreover, there is ongoing research for improving
access performance of a disk drive.

In one embodiment, a method may comprise: receiving a
write request from a host containing host data for writing to a
target location of a data storage medium, a target location
comprising one or more clusters, a cluster having multiple
sequentially-numbered data storage addresses of the data
storage medium; and writing at least one cluster of the target
location with host data and dummy data pursuant to the write
request, dummy data being arbitrary data written to fill data
storage addresses in the target location not written by host
data.

In another embodiment, an apparatus may comprise a data
storage medium, and a processor configured to: receive a
write request from a host containing host data for writing to a
target location of the data storage medium, a target location
comprising one or more clusters, a cluster being multiple
sequentially-numbered data storage addresses of the data
storage medium; and write at least one cluster of the target
location with host data and dummy data pursuant to the write
request, dummy data being arbitrary data written to fill data
storage addresses in the target location not written by host
data.

In yet another embodiment, an apparatus may comprise a
computer-readable storage medium storing instructions that
when executed by a computer cause the computer to perform
the method comprising: receiving a write request from a host
containing host data for writing to a target location of a data
storage medium, a target location comprising one or more
clusters, a cluster being multiple sequentially-numbered data
storage addresses of the data storage medium; and writing at
least one cluster of the target location with host data and
dummy data pursuant to the write request, dummy data being
arbitrary data written to fill data storage addresses in the target
location not written by host data.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor-
porated in and constitute a part of this specification, illustrate

10

15

20

25

30

35

40

45

50

55

60

65

2

exemplary embodiments and together with the description
serve to explain the principles of the invention.

In the drawings:

FIG. 1A is ablock diagram of a computer system according
to an embodiment of the inventive concept;

FIG. 1B is a block diagram of a computer system according
to another embodiment of the inventive concept;

FIG. 2 is a diagram illustrating a software operation system
of'a storage device according to an embodiment of the inven-
tive concept;

FIG. 3 is a top plan view of a head disk assembly of a disk
drive according to an embodiment of the inventive concept;

FIG. 4A is a view showing an electrical circuit configura-
tion of a disk drive according to an embodiment of the inven-
tive concept;

FIG. 4B is a view showing an electrical circuit configura-
tion of a disk drive according to another embodiment of the
inventive concept;

FIG. 5 is a view showing a sector structure of a track of a
disk as a storage medium applied to the present invention;

FIG. 6 is a view showing a structure of a service informa-
tion field shown in FIG. 5;

FIG. 7 conceptually illustrates the configuration of tracks
caused by a flux generated in a shingle write method accord-
ing to an embodiment of the inventive concept;

FIG. 8 conceptually illustrates the configuration of tracks
caused by an adjacent track interference phenomenon in a
shingle write method according to an embodiment of the
inventive concept;

FIG. 9 is a view illustrating the configurations of physical
zones and virtual bands for a storage medium according to an
embodiment of the inventive concept;

FIG. 10 is a view illustrating the structure of virtual bands
allocated to logical bands for each physical zone of a storage
medium according to an embodiment of the inventive con-
cept’

FIG. 11 is a detailed block diagram of the processor and
RAM of a storage device according to an embodiment of the
inventive concept;

FIG. 12 is a detailed block diagram of a cluster alignment
management processor shown in FIG. 11;

FIG. 13 is a detailed block diagram of an address conver-
sion processor shown in FIG. 11;

FIG. 14 is a detailed block diagram of a second processor
shown in FIG. 13;

FIG. 15 is a flowchart of a data writing method according to
an embodiment of the inventive concept;

FIG. 16 is a detailed flowchart according to an embodiment
for carrying out the process of the step 102 (S102) shown in
FIG. 15;

FIG. 17 is a detailed flowchart according to another
embodiment for carrying out the process of the step 102
(S102) shown in FIG. 15;

FIG. 18 is a detailed flowchart according to yet another
embodiment for carrying out the process of the step 102
(S102) shown in FIG. 15;

FIG. 19 is a detailed flowchart according to an embodiment
for carrying out the process of the step 105 (S105) shown in
FIG. 15;

FIG. 20 is a detailed flowchart for carrying out a write
operation according to the inventive concept;

FIG. 21 shows an example of address mapping information
representing the allocation of virtual bands to logical bands
shown in FIG. 10;

FIG. 22 is a conceptual diagram showing a structure of
mapping virtual addresses VA to LBAs in virtual band num-
ber 0;

US 9,063,659 B2

3

FIG. 23 A illustrates an example of address mapping infor-
mation about virtual band number 0 shown in FIG. 22;

FIG. 23B illustrates another example of address mapping
information about virtual band number 0 shown in FIG. 22;

FIG. 24 is a conceptual diagram of a write area in which
both the start and end positions of a first area designated by a
write command are aligned in units of clusters;

FIG. 25A is a conceptual diagram of a write area in which
the start position of the first area designated by the write
command is aligned in units of clusters and the end position of
the first area is not aligned in units of clusters;

FIG. 25B is a conceptual diagram of a write area in which
a dummy pattern is used for cluster-based alignment accord-
ing to an embodiment of the present invention when the
cluster-based alignment state of the first area designated by
the write command is as shown in FIG. 25A;

FIG. 26A is a conceptual diagram of a write area in which
the start position of the first area designated by the write
command is not aligned in units of clusters and the end
position of the first area is aligned in units of clusters;

FIG. 26B is a conceptual diagram of a write area in which
a dummy pattern is used for cluster-based alignment accord-
ing to an embodiment of the present invention when the
cluster-based alignment state of the first area designated by
the write command is as shown in FIG. 26A;

FIG. 27A is a conceptual diagram of a write area in which
both the start and end positions of the first area designated by
the write command are not aligned in units of clusters;

FIG. 27B is a conceptual diagram of a write area in which
a dummy pattern is used for cluster-based alignment accord-
ing to an embodiment of the present invention when the
cluster-based alignment state of the first area designated by
the write command is as shown in FIG. 27A;

FIG. 28A is a view showing an example of a mapping state
of LBAs and VAs when written to virtual band number 0 by
applying the writing method according to the present inven-
tion;

FIG. 28B is a view showing an example of a mapping state
of LBAs and VAs when written to virtual band number 0
without applying the writing method according to the present
invention;

FIG. 29 is a view showing the network configuration for
explaining a method for managing cluster alignment in a
write operation via a network according to an embodiment of
the inventive concept; and

FIG. 30 is a flowchart of the method for managing cluster
alignment in a write operation via a network according to an
embodiment of the inventive concept.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the inventive concept will be described in
detail with reference to the accompanying drawings. The
inventive concept, however, may be embodied in various
different forms, and should not be construed as being limited
only to the illustrated embodiments. Rather, these embodi-
ments are provided as examples so that this disclosure will be
thorough and complete, and will fully convey the inventive
concept to those skilled in the art. Throughout the attached
drawings, like reference numerals denote like elements.

According to the present invention, address mapping infor-
mation can be simplified by performing a write operation
such thatalignment is performed on a storage medium in units
of clusters. That is, the total number of address mapping
information for the storage medium can be reduced since a
large number of address mapping information is highly likely
to be integrated into single address mapping information. The

20

25

40

45

50

4

reduction in the number of address mapping information can
shorten the searching time of address mapping information,
thereby reducing access time. Therefore, an aspect of the
present invention is to provide a data writing method for
reducing the access time of a storage device using dynamic
address translation.

Hereinafter, an exemplary embodiment of the present
invention will be described in detail with reference to the
accompanying drawings.

As shown in FIG. 1a, a computer system according to an
embodiment of the inventive concept includes a storage
device 1000A, a host device 2000, and a connector 3000.

More specifically, the storage device 1000A includes a
processor 110, a ROM 120, a RAM 130, a storage medium
interface (storage medium I/F) 140, a storage medium 150, a
host interface (host /F) 160, and a bus 170.

The host device 2000 performs a process of issuing a
command for operating the storage device 1000A, transmit-
ting it to the storage device 1000A connected via the connec-
tor 3000, and transmitting or receiving data to or from the
storage device 1000A in response to the issued command.

The connector 3000 is means for electrically connecting an
interface port of the host device 2000 and an interface port of
the storage device 1000A, and includes a data connector and
a power connector. For example, when a Serial Advanced
Technology Attachment (SATA) I/F is used, the connector
3000 may include a 7-pin SATA data connector and a 15-pin
SATA power connector.

First of all, the components of the storage device 1000A
will be described.

The processor 110 interprets commands and controls the
components of the storage device 1000A according to the
interpretation results. The processor 110 may include a code
object management unit, and may load a code object stored in
the storage medium 150 to the RAM 130 using the code
object management unit. The processor 110 loads code
objects in the RAM 130 for executing a data writing method
according to the flowcharts of FIGS. 15 to 20 and a method for
managing cluster alignment in a write operation via a network
according to the flowchart of FIG. 30.

The processor 110 then executes a task for the data writing
method according to the flowcharts of FIGS. 15 to 20 and the
method for managing cluster alignment in a write operation
via a network according to the flowchart of FIG. 30 by using
the code objects loaded in the RAM 130. The data writing
method and the method for managing cluster alignment in a
write operation via a network, which are executed by the
processor 110, will be discussed in detail with reference to
FIGS. 15 to 20 and FIG. 30 below.

The ROM 120 stores program codes and data necessary for
operating the storage device 1000A.

The program codes and data stored in the ROM 120 and/or
the storage medium 150 are loaded in the RAM 130 under
control of the processor 110.

The storage medium 150 is a main storage medium of the
storage device, and may include a disk or a non-volatile
semiconductor memory device, for example. The storage
device 1000A may thus include a disk drive, for example, and
a detailed structure of a head disk assembly 100, including a
disk and a head in the disk drive, is shown in FIG. 3.

Referring to FIG. 3, the head disk assembly 100 includes at
least one disk 12 rotated by a spindle motor 14. The disk drive
may also include a head 16 positioned adjacent to a surface of
the disk 12.

Thehead 16 senses and magnetizes a magnetic field of each
disk 12, thereby reading information from or writing infor-
mation to the rotating disk 12. Typically, the head 16 is

US 9,063,659 B2

5

coupled to a surface of each disk 12. Although a single head
16 is illustrated, the head 16 needs to be regarded as including
a write head for magnetizing the disk 12 and a separate read
head for sensing the magnetic field of the disk 12. The read
head may include a magneto-resistive (MR) element. The
head 16 may be referred to as a magnetic head or a head.

The head 16 may be incorporated into a slider 20. The
slider 20 is configured to generate an air bearing between the
head 16 and the surface of the disk 12. The slider 20 is coupled
to a head gimbal assembly 22 that is attached to an actuator
arm 24 having a voice coil 26. The voice coil 26 is positioned
adjacent to a magnetic assembly 28 so as to define a Voice
Coil Motor (VCM) 30. A current provided to the voice coil 26
generates a torque which rotates the actuator arm 24 with
respect to a bearing assembly 32. The rotation of the actuator
arm 24 moves the head 16 across the surface of the disk 12.

Information is usually stored in ring-shaped tracks 34 of
the disk 12. Each track 34 generally includes multiple sectors.
A sector structure of a track is illustrated in FIG. 5.

As shown in FIG. 5, one servo sector T includes a servo
information field S and a data field. The data field may include
a plurality of data sectors D. Of course, one servo sector may
include a single data sector D. The data sector D will be
referred to as a sector. For example, the size of a sector may be
512 bytes.

Also, signals as illustrated in FIG. 6 are recorded to the
servo information field S.

As shown in FIG. 6, a preamble 601, a servo synchroniza-
tion indication signal 602, a gray code 603, and a burst signal
604 are written to the servo information field S.

The preamble 601 provides clock synchronization when
reading servo information, and provides a predetermined tim-
ing margin by setting a gap before the servo sector. Also, the
preamble 601 is used to determine a gain (not shown) of an
automatic gain control (AGC) circuit.

The servo synchronization indication signal 602 consists
of'aservo address mark (SAM) and a servo index mark (SIM).
The servo address mark is a signal that indicates a start of a
sector, and the servo index mark is a signal that indicates a
start of a first servo sector in a track.

The gray code 603 provides track information, and the
burst signal 604 is used to control the head 16 to follow the
center of the track 34. For example, the burst signal may
include four patterns A, B, C, and D, and four burst patterns
are combined to generate a position error signal used to con-
trol track following.

The disk 12 is divided into a maintenance cylinder area,
which is inaccessible to a user, and a user data area, which is
accessible to the user. The maintenance cylinder area may be
referred to as a system area. Various information required to
control the disk drive is stored in the maintenance cylinder
area, as well as information required to perform the data
writing method and method for managing cluster alignment
in a write operation via a network according to the present
invention. Specifically, address mapping information for con-
verting a logical block address (LBA) into a virtual address
(VA) based on a virtual band may be stored in the mainte-
nance cylinder area. The address mapping information is also
referred to as a mapping table or meta data. Moreover, infor-
mation about a cluster unit size may be stored in the disk 12.
The information about a cluster unit size may be set differ-
ently for each physical zone of the disk 12.

The head 16 moves across the surfaces of the disk 12 in
order to read or write information in different tracks. A plu-
rality of code objects used to realize various functions of the
disk drive may be stored in the disk 12. For example, a code
object for executing an MP3 player function, a code object for

20

25

30

35

40

45

55

6

executing a navigation function, a code object for executing
various video games, and the like, may be stored in the disk
12.

Referring again to FIG. 1A, the storage medium interface
140 is an element that enables the processor 110 to access the
storage medium 150 in order to write and read information. In
detail, the storage medium interface 140 in the storage device
that is implemented as a disk drive includes a servo circuit
controlling the head disk assembly 100 and a read/write chan-
nel circuit performing signal processing for data reading/
writing.

The host interface 160 performs data transmission/recep-
tion to/from the host device 2000 such as a personal com-
puter, a mobile device, etc., and may be an interface having
various sizes, such as a serial advanced technology attach-
ment (SATA) interface, a parallel advanced technology
attachment (PATA) interface, or a universal serial bus (USB)
interface.

The bus 170 transfers information between the elements of
the storage device.

Next, a software operation system of a hard disk drive,
which is an example of the storage device, will be described
with reference to FIG. 2.

As shown in F1G. 2, a plurality of code objects 1 through N
are stored in a disk 150A, which is a storage medium of the
hard disk drive (HDD).

The ROM 120 stores a boot image and a packed real time
operating system (RTOS) image.

The plurality of code objects 1 through N are stored in the
disk 150A. The code objects stored in the disk may include
not only code objects required for operating the disk drive but
also code objects related to various functions that may be
extended to the disk drive. In particular, code objects for
executing the methods according to the flowcharts of FIGS.
15 to 20 and FIG. 30 are stored in the disk 150A. Obviously,
the code objects for executing the methods according to the
flowcharts of FIGS. 15 to 20 and FIG. 30 may also be stored
in the ROM 120 instead of the disk 150A. Also, code objects
performing various functions such as a MP3 player function,
anavigation function, a video game function, or the like may
also be stored in the disk 150A.

The RAM 130 reads the boot image from the ROM 120
while booting the disk drive, and an unpacked RTOS image is
loaded to the RAM 130. Also, code objects required to oper-
ate a host interface stored in the disk 150A are loaded to the
RAM 130. Obviously, a data area for storing data is also
allocated in the RAM 130.

Circuits that are required to perform signal processing for
data reading/writing are included in a channel circuit 200, and
circuits required for controlling the head disk assembly 100
for performing data reading/writing operations are included
in a servo circuit 210.

An RTOS 110A is a real time operating system program
and is a multi-program operating system using a disk. In the
RTOS 110A, real time multi-processing is performed as a
foreground process having high priority, and batch process-
ing is performed as a background process having low priority
according to a task. Also, the RTOS 110A loads code objects
from the disk and unloads code objects onto the disk.

The RTOS 110A manages a code object management unit
(COMU) 110-1, a code object loader (COL) 110-2, a memory
handler (MH) 110-3, a channel control module (CCM) 110-4,
and a servo control module (SCM) 110-5 to perform tasks
according to requested commands. The RTOS 110A also
manages application programs 220.

In detail, the RTOS 110A loads code objects required for
controlling the disk drive to the RAM 130 when booting the

US 9,063,659 B2

7

disk drive. Accordingly, after the booting is executed, the disk
drive may be operated by using code objects loaded to the
RAM 130.

The COMU 110-1 stores location information regarding
locations to which code objects are written, and arbitrates a
bus. Also, the COMU 110-1 stores information regarding
priorities of performed tasks. In addition, the COMU 110-1
manages task control block (TCB) information required to
execute tasks for code objects, and stack information.

The COL 110-2 loads the code objects stored in the disk
150A to the RAM 130 using the COMU 110-1 and unloads
the code objects stored in the RAM 130 to the disk 150A.
Accordingly, the COL 110-2 may load the code objects stored
in the disk 150 A used to execute the methods according to the
flowcharts of FIGS. 15 through 20 and FIG. 30 to the RAM
130.

The RTOS 110A may execute the methods according to the
flowcharts of FIGS. 15 through 20 and FIG. 30, which will be
described below, by using the code objects loaded to the RAM
130.

The MH 110-3 performs writing or reading data to/from
the ROM 120 and the RAM 130.

The CCM 110-4 performs channel controlling required for
performing signal processing for data reading/writing, and
the SCM 110-5 performs servo controlling including the head
disk assembly for performing data reading/writing.

Next, FIG. 1B shows a block diagram of a computer system
according to another embodiment of the inventive concept.

A storage device 1000B of the computer system shown in
FIG. 1B further includes a nonvolatile memory device 180, in
addition to the components of the storage device 1000A
shown in FIG. 1A. The storage medium 150 in FIG. 1B may
be implemented as a disk.

The nonvolatile memory device 180 may be implemented
as a nonvolatile semiconductor memory device. For example,
the nonvolatile memory device 180 may be a flash memory, a
phase change RAM (PRAM), a ferroelectric RAM (FRAM),
or a magnetic RAM (MRAM).

The nonvolatile memory device 180 may store some or all
of the data to be stored in the storage device 1000B. For
example, various information required for controlling the
storage device 1000B may be stored in the nonvolatile
memory device 180.

Also, the nonvolatile memory device 180 may store pro-
gram codes and information for executing the methods
according to the flowcharts of FIGS. 15 through 20 and FIG.
30. Concretely, a mapping table for converting a logical block
address into a virtual address based on a virtual zone or virtual
band may be stored in the nonvolatile memory device 180. If
the mapping table is stored in the nonvolatile memory device
180, the storage device may load the mapping table stored in
the nonvolatile memory device 180 to the RAM 130.

Repetitive descriptions of the same elements described
previously described for the computer system of FIG. 1A will
be omitted.

Next, FIG. 4A illustrates an electrical circuit configuration
of a disk drive 1000A' as an example of the storage device
shown in FIG. 1A according to an embodiment of the inven-
tive concept.

As shown in FIG. 4A, a disk drive 1000A!, according to an
embodiment of the inventive concept includes a pre-amplifier
410, a Read/Write (R/W) channel 420, a processor 430, a
Voice Coil Motor (VCM) driver 440, a Spindle Motor (SPM)
driver 450, an ROM 460, a RAM 470, and a host interface
480.

The processor 430 may be a Digital Signal Processor
(DSP), a microprocessor, a microcontroller, or the like. The

20

40

45

55

65

8

processor 430 controls the R/W channel 420 to read informa-
tion from the disk 12 or write information to the disk 12
according to a command received from the host device 2000
through the host interface 480.

The processor 430 is coupled to the VCM driver 440 which
provides a driving current for driving the VCM 30. The pro-
cessor 430 provides a control signal to the VCM driver 440 to
control motion of the head 16.

The processor 430 is coupled to the SPM driver 450, which
provides a driving current for driving a spindle motor (SPM)
14. The processor 430, upon being supplied with power,
provides a control signal to the SPM driver 450 to rotate the
SPM 14 at a target speed.

The processor 430 is also coupled to the ROM 460 and the
RAM 470. The ROM 460 stores firmware and control data for
controlling the disk drive. The ROM 460 also stores program
codes and information for executing the methods according to
the flowcharts of FIGS. 15 through 20 and FIG. 30. Alterna-
tively, the program codes and information for executing the
methods according to the flowcharts of FIGS. 15 through 20
and FIG. 30 may be stored in the maintenance cylinder area of
the disk 12, instead of the ROM 460.

The RAM 470 loads the program codes stored in the ROM
460 or the disk 12 in an initialization mode under the control
of the processor 430, and temporarily stores data received
through the host interface 480 or data read from the disk 12.

The RAM 470 may be implemented by a Dynamic Ran-
dom Access Memory (DRAM) or a Synchronous Random
Access Memory (SRAM). The RAM 470 may be designed to
operate in a Single Data Rate (SDR) or Double Data Rate
(DDR) scheme.

The processor 430 may control the disk driver so as to
execute the methods according to the flowcharts of FIGS. 15
through 20 and FIG. 30 using program codes and information
stored in the ROM 460 or the maintenance cylinder area of the
disk 12.

Next, FIG. 4B illustrates an electrical circuit configuration
of a disk drive 1000B' as an example of the storage device
shown in FIG. 1B according to an embodiment of the inven-
tive concept.

The disk drive 1000B' shown in FIG. 4B further includes a
nonvolatile memory device 490, in addition to the compo-
nents of disk drive 1000A' shown in FIG. 4A. The nonvolatile
memory device 490 may store some of the data to be stored in
the disk drive 1000B'. For example, various information
required for controlling the disk drive 1000B' may be stored
in the nonvolatile memory device 490.

Also, the nonvolatile memory device 490 may store pro-
gram codes and information for executing the methods
according to the flowcharts of FIGS. 15 through 20 and FIG.
30. Concretely, a mapping table for converting a logical block
address into a virtual address based on a virtual zone or virtual
band may be stored in the nonvolatile memory device 490.

The processor 430 is also coupled to the ROM 460, the
RAM 470, and the nonvolatile memory device 490. The ROM
460 stores firmware and control data for controlling the disk
drive. The ROM 460 also stores program codes and informa-
tion for executing the methods according to the flowcharts of
FIGS. 15 through 20 and FIG. 30. Alternatively, the program
codes and information for executing the methods according to
the flowcharts of 15 through 20 and FIG. 30 may be stored in
the maintenance cylinder area of the disk 12 or in the non-
volatile memory device 490, instead of the ROM 460.

The RAM 470 loads the program codes stored in the ROM
460, the disk 12, or the nonvolatile memory device 490 in an
initialization mode under the control of the processor 430.

US 9,063,659 B2

9

Repetitive descriptions of the same elements described
previously described for the disk drive 1000A' of FIG. 4A will
be omitted.

Next, data read and write operation, which are executed
after searching a physical address of the disk corresponding to
a logical block address designated by a read command or
write command, will be described with reference to FIG. 4A
or FIG. 4B.

Data read and write operations of the disk drive will be
described.

In the data read mode, the disk drive amplifies an electrical
signal sensed by the head 16 from the disk 12 through the
pre-amplifier 410. Thereafter, in the R/W channel 420, a
signal output from the pre-amplifier 410 is amplified by an
automatic gain control circuit (not shown), which automati-
cally varies a gain according to an amplitude of the signal.
The amplified signal is converted into a digital signal, and
then the digital signal is decoded, thereby detecting data. An
error correction process is performed on the detected data by
using a Reed Solomon (RS) code as an error correction code
at the processor 430. Then error corrected data is converted
into stream data for transmission to the host device 2000
through the host interface 480.

In the data write mode, the disk drive receives data from the
host device 2000 through the host interface 480, and adds an
error correction symbol based on the RS code to the data
through the processor 430. The disk drive suitably performs
coding for a writing channel through the R/W channel 420,
and then writes the data in the disk 12 through the head 16
with a writing current amplified by the pre-amplifier 410.

Now, an operation for the processor 430 to execute the
methods according to the flowcharts of FIGS. 15 through 20
and FIG. 30 by using the program codes and information
loaded to the RAM 470 will be described.

First of all, a shingle write method, which is a new writing
method, suggested to increase the recording density of the
disk drive, which is a type of storage device according to the
present invention, will be described.

The shingle write method is a writing method in which data
is written only in one direction as tracks on a disk are over-
written as if shingles are stacked. That is, as shown in FIG. 7,
in the shingle write method, assuming that data is written only
in the arrow direction, an (N-1)th track is partially overwrit-
ten when an Nth track adjacent to the (N-1)th track is written,
and the Nth track is partially overwritten when the (N+1)th
track adjacent to the Nth track is written, thereby increasing
the TPI (Track Per Inch) characteristic, which is the radial
recording density of a storage medium.

The shingle write method has to satisfy the restriction that
the (N-1)th track cannot be written after writing the Nth track
because a flux is always generated only in one direction. As
shown in FIG. 8, if the (N-1)th track in the direction opposite
to the shingle write direction is written after writing the Nth
track, the Nth track is erased due to an adjacent track inter-
ference (ATT) effect.

Accordingly, to solve this problem, there is a need for a
technique of dynamically allocating a new disk address for a
logical block address (LBA) provided from a host so as to
always perform writing only in either one of the inner and
outer circumferential directions of the disk.

The present invention provides a disk accessing method,
which uses an existing LBA as it is by using a virtual address
in the process of converting the existing [.LBA into a cylinder
head sector (CHS), i.e., a physical address of a disk drive, and
satisfies the condition that the shingle write direction in the
disk drive is limited to only one direction.

10

15

20

25

30

35

40

45

50

55

60

65

10

Referring to FIG. 9, the configurations of a zone and virtual
bands for realizing the accessing method suggested in the
present invention will be described.

A storage area of the disk 12 is divided into a plurality of
physical zones. The TPI (tracks per inch), i.e., recording
density, and BPI (bits per inch) for each physical zone may be
differently set. Each physical zone includes a plurality of
virtual bands, and each virtual band is defined as a set of
consecutive M tracks to be overwritten. Also, a guard track is
arranged between the virtual bands to avoid overwriting
between the virtual bands. Referring to FIG. 9, K virtual
bands VB_1to VB_K are arranged in physical zone 1. That is,
a virtual band is defined as a segment of a unit size of a
physical storage space of a storage medium. Data is sequen-
tially written on the tracks included in a virtual band in either
one of the inner and outer circumferential directions of the
disk to generate address mapping information.

Next, the structure of allocating logical bands and virtual
bands for each zone will be described with reference to FIG.
10.

FIG. 10 is a view schematically showing the structure of
allocating virtual bands VB to logical bands LB for each
physical zone of a storage medium according to an embodi-
ment of the inventive concept.

As shown in FIG. 10, virtual bands are allocated to logical
bands in order to perform an actual writing operation in a
physical zone of a storage medium. Physical zone 1 of the
storage medium may consist of K logical bands. A logical
band is defined as a set of consecutive logical block addresses
in units of a first size. That is, a logical band refers to a set of
consecutive writable logical block addresses.

For example, assuming that the range of logical block
addresses of physical zone 1 consists of 1,000 LBAs of 0
through 999, and each of the logical bands belonging to
physical zone 1 is defined as a set of 100 LBAs, the number of
logical bands included in physical zone 1 is 10.

The number of virtual bands is set to Q (Q>K), which is
more than the number of logical bands. The virtual bands are
defined as the segments of the physical storage device of the
storage inunits of a second size. That s, if the storage medium
is a disk, a virtual band is defined as a set of M tracks to be
overwritten.

Virtual bands not allocated to logical bands may be referred
to as reserved virtual bands. In other words, storage areas
corresponding to the virtual bands not allocated to the logical
bands may be referred to as reserved areas. Reserved virtual
band information is stored in a free queue to be explained in
FIG. 14 below.

Now, an operation for a storage device to perform access by
using a logical band will be described.

FIG. 11 shows a detailed block diagram of the processor
110 and RAM 130 of the storage device illustrated in FIGS.
1A and 1B or the processor 430 and RAM 470 of the disk
driver illustrated in FIGS. 4A and 4B according to an embodi-
ment of the inventive concept. For convenience of descrip-
tion, FIG. 11 will be explained with reference to the disk drive
of FIGS. 4A and 4B.

As shown in FIG. 11, the processor 430 includes a cluster
alignment management processor 430-1, an address mapping
information management processor 430-2, and an address
conversion processor 430-3. Also, the RAM 470 stores
address mapping information 470-1, and data read from the
disk 12 or data to be written to the disk 12 is stored in the
read/write data area 470-2. The address mapping information
management processor 430-2 executes a process for manag-
ing address mapping information. Specifically, when power
is supplied to the disk drive, the address mapping information

US 9,063,659 B2

11

management processor 430-2 loads the address mapping
information 470-1 stored in the disk 12 onto the RAM 470.
That is, the address mapping information management pro-
cessor 430-2 reads the address mapping information 470-1
from the disk 12 and stores it in the RAM 470.

The address mapping information 470-1 may comprise
information for converting a logical block address into a
physical address of the storage medium by using a virtual
address. For example, the address mapping information may
be mapping table information that represents the allocation
relationship between a logical band and virtual bands and the
allocation relationship between logical block addresses and
virtual addresses in a virtual band allocated to a logical band.
The address mapping information is also referred to as meta
data.

The address mapping information 470-1 may be config-
ured to retrieve a virtual address based on LBA. The virtual
address may be defined based on the physical address of a
storage medium. If the storage medium is a disk, the virtual
address may be defined based on the physical address of a
sector. Moreover, the virtual address of the disk may be
defined based on CHS (Cylinder Header Sector). Besides, the
virtual address of the disk may be defined based on a virtual
zone or physical zone, a virtual band, a track, and a sector. The
address mapping information 470-1 may be generated while
data is being sequentially written on the tracks of the disk
included in a virtual band in either one of the inner and outer
circumferential directions according to a shingle write
method.

The address mapping information 470-1 may include
information representing the allocation structure of logical
bands and virtual bands for each physical zone. That is, the
address mapping information 470-1 may include information
representing the mapping structure of virtual bands allocated
and mapped to logical bands for each physical zone as shown
in FIG. 10.

As shown in FIG. 21, the address mapping information
may include the categories of logical band number LB NO,
virtual band number VB NO, and last virtual address number
LA VA accessed by a virtual band.

Referring to FIG. 21, it can be seen that virtual band num-
bers 2 and 0 are allocated to logical band number 0, the last
virtual address accessed by virtual band number 2 is 199, and
the last virtual address accessed by virtual band number 0 is
94.

For example, if the size of a virtual band is set to 200
sectors, and virtual addresses 0 to 199 are set for each virtual
band, the virtual addresses including the last virtual address
199 are allocated to virtual band number 2, and this shows that
there exists no virtual address that can be newly allocated.
Also, when a write command for an LBA included in the
logical band 0 is received, address mapping information is
updated such that virtual address 95, obtained by adding 1 to
the last virtual address accessed by the virtual band number 0,
is mapped to an LBA designated by the write command.

FIG. 22 illustrates an example of a structure in which
virtual addresses (VA) are mapped to LBAs in the virtual band
0 (VB_0) allocated to the logical band number 0.

Referring to FIG. 22, the virtual band (VB_0) includes
virtual addresses 0 to 199, and each of the virtual addresses is
allocated to a sector. Accordingly, referring to FIG. 22, a unit
virtual band includes 200 sectors. A horizontal line shows the
sectors included in one track. As shown in FIG. 22, 20 sectors
are included in one track. 20 sectors included in track 1 are
designated by virtual addresses (VA) 0 to 19, respectively. In
the same manner, 20 sectors included in track 10 are desig-
nated by Vas 180 to 199, respectively.

10

15

20

25

30

40

45

50

55

60

12

As shownin FIG. 22, LBAs 0 to 9 are respectively allocated
to VAs 0 to 9, LBAs 20 and 21 are respectively allocated to
VAs 15 and 16, LBAs 50 to 59 are respectively allocated to
VAs 381047, and LBAs 10 to 18 are respectively allocated to
Vas 86 to 94. VAs 10 to 14, 17 to 37, and 48 to 85 represent
invalid virtual addresses, and VAs 95 to 199 represent valid
virtual addresses that are not allocated. The invalid virtual
addresses refer to the previous virtual addresses correspond-
ing to updated LBAs.

Address mapping information about the virtual band 0
(VB_0) shown in FIG. 22 can be generated as shown in FIG.
23A, for example.

FIG. 23A is a mapping table that simply shows the map-
ping relationship of VAs corresponding to respective LBAs
allocated in VB_0. The mapping table having the structure
shown in FIG. 23 A has the disadvantage of large data volume
because it merely lists VAs corresponding to respective
LBAs.

To make up for this disadvantage, there is suggested a
method that generates address mapping information by com-
bining sequentially increasing LBAs and VAs into a group.

That is, newly suggested address mapping information
indicates a group of sequentially increasing . BAs and VAs by
the starting LBA, starting VA, and number (SCN) of sequen-
tially increasing sectors.

Referring to FIG. 22, the L.BA sequentially increases from
0 to 9 with increasing VAs 0 to 9, the LBA sequentially
increases from 20 to 21 with increasing VAs 15 and 16, the
LBA sequentially increases from 50 to 59 with increasing
VAs 38 to 47, and the LBA sequentially increases from 10 to
18 with increasing VAs 86 to 94.

As above, mapping information about the group of LBAs
from 0 to 9 and VAs from 0 to 9 can be represented by the
address mapping format of (LBA, SCN VA) as (0, 10, 0).

In the same manner, for the group of sequentially increas-
ing LBAs 20 and 21 with increasing VAs 15 and 16, the
starting LBA is 20, the starting VA is 15, and the number of
sequentially increasing sectors is 2. Thus, (LBA, SCN, VA)
can be represented by (20, 2, 15). For the group of sequen-
tially increasing LBAs 50 to 59 with increasing VAs 38 to 47,
(LBA, SCN, VA) can be represented by (50, 10, 38), and for
the group of sequentially increasing LBAs 10 to 18 with
increasing VAs 86 to 94, (LBA, SCN, VA) can be represented
by (10, 9, 86). Accordingly, for an area in which logical block
addresses and the corresponding virtual addresses sequen-
tially increase, it is possible to generate mapping information
as key information.

To sum up, the address mapping information as shown in
FIG. 23B can be generated. It can be seen that the address
mapping information shown in FIG. 23B is simpler and
smaller in data volume than the address mapping information
shown in FIG. 23A.

For virtual bands allocated to a logical band, address map-
ping information about each virtual band can be generated in
the manner shown in FIG. 23B.

Referring again to FIG. 11, the RAM 470 may store
address mapping information 470-1 for each zone, the
address mapping information 470-1 including mapping infor-
mation representing the allocation relation between a logical
band and virtual bands and the last virtual address accessed by
avirtual band, as shown in FIG. 21, and mapping information
representing VAs corresponding to LBAs in a virtual band
allocated to a logical band, as shown in FIG. 23B.

The address mapping information management processor
430-2 modifies the address mapping information 470-1
stored in the RAM 470 based on a write command. Thatis, the
address mapping information management processor 430-2

US 9,063,659 B2

13

adds to the address mapping information 470-1, information
about virtual bands newly allocated to a logical band by a
write command or information about virtual addresses added
corresponding to LBAs in an allocated virtual band. Accord-
ingly, the address mapping information 470-1 stored in the
RAM 470 is updated each time a write command is executed.
Upon receiving an end system command, the address map-
ping information management processor 430-2 can read the
address mapping information 470-1 stored in the RAM 470
and write to the disk 12. Therefore, updated address mapping
information 470-1 is stored in the disk 12.

The cluster alignment management processor 430-1 per-
forms the operation of modifying an area designated by a
write command and data to be written so that data is aligned
and written to the storage medium in units of at least one
cluster based on information about a cluster unit size read
from the storage medium including the disk 12. A detailed
operation of the cluster alignment management processor
430-1 will be described with reference to FIG. 12. A cluster
unit is a unit of storage for storing data in the storage device,
and may be set to an initial value.

A detailed configuration of the cluster alignment manage-
ment processor 430-1 is illustrated in FIG. 12.

As shown in FIG. 12, the cluster alignment management
processor 430-2 includes a cluster-based alignment detection
unit 510, a dummy write area calculation unit 520, an address
mapping information searching unit 530, a dummy pattern
generation unit 540, and a write area modifying unit 550.

The cluster-based alignment detection unit 510 performs
the process of detecting a cluster-based alignment state for a
first area designated by a write command.

In detail, a cluster-based alignment state for the first area is
detected as follows.

First of all, the start position and end position of the first
area are calculated based on (LBA, SIZE) information
included in the write command. Here, LBA denotes a logical
block address representing the start position of the first area,
and SIZE denotes the number of sectors of the first area. That
is, SIZE represents the range of LBAs included in the first
area. Accordingly, the end position of the first area is a logical
block address having a value of (LBA+SIZE-1). For
example, if (LBA, SIZE) is (100, 10), the write start position
is LBA 100, and the end position is LBA 109.

For example, if the sector size of the disk 12 is 512 bytes,
and the cluster unit size is 4K bytes, the cluster unit size is 8
sectors. In this case, the start position of each cluster in the
disk 12 willbe LBA 0, LBA 8, LBA 16, L. BA 24, That s,
the start positions of clusters are LBAs having multiples of 8.
Also, the end positions of clusters are LBAs obtained by
subtracting 1 from multiples of 8. In other words, the end
positions of clusters have a value of 7, which is the remainder
of'an LBA when divided by 8.

Accordingly, if the LBA value, among the (LBA, SIZE)
information included in the write command, corresponds to
multiples of the number of sectors corresponding to a cluster
unit size, the first area A1 is detected as being aligned with the
start position of a cluster. Also, if the remainder of the (LBA+
SIZE-1) value when divided by the number of sectors corre-
sponding to the cluster unit size, the first area Al is detected
as being aligned with the end position of a cluster. In another
method, if the (LBA+SIZE) value corresponds to multiples of
the number of sectors corresponding to the cluster unit size,
the first area Al is detected as being aligned with the end
position of a cluster.

FIG. 24 shows an example in which the start position and
end position of the first area A1 to which data DATA is to be
written in response to a write command are aligned in units of

25

40

45

55

14

clusters. Here, CP denotes a cluster unit size, which can be
represented by the number of sectors. FIG. 25A shows an
example in which the start position of the first area Al to
which data is written in response to a write command is
aligned in units of clusters but the ending position thereof is
not aligned in units of clusters. FIG. 26 A shows an example in
which the start position of the first area A1l to which data is
written in response to a write command is not aligned in units
of clusters but the end position thereof is aligned in units of
clusters. FIG. 27A shows an example in which both the start
and end positions of the first area Al to which data is written
in response to a write command are not aligned in units of
clusters.

The dummy write area calculation unit 520 performs the
process of calculating address information for a second area
A2 not included in the first area A1 within the clusters corre-
sponding to the first area designated by the write command
based on the detection result of the cluster-based alignment
detection unit 510.

Firstofall, as shown in FIG. 24, if the start position and end
position of the first area A1 to which data DATA is to be
written in response to a write command are aligned in units of
clusters, the address information for the second area A2 is not
calculated. In this case, there is no need to calculate the
address information for the second area A2.

For example, the dummy write area calculation unit 520
may be designed to perform the process of calculating the
address information for the second area A2 provided that the
start position of the first area A1 is aligned in units of clusters
and the end position of the first area Al is not aligned in units
of clusters. In this case, the address information for the second
area A2 is calculated only when detection is performed as
shown in FIG. 25A, among FIGS. 24, 25A, 26 A, and 27A. If
the start position of the first area Al to which data DATA is to
be written in response to a write command is not aligned in
units of clusters, the first area A1 is very likely to be an MFT
file, a boot sector, or a boot record. Accordingly, there is a
high possibility that a write command or read command may
be issued in units of sectors, and hence the dummy write area
calculation unit 520 may be designed such that alignment is
not performed in units of clusters.

In another example, the dummy write area calculation unit
520 may be designed to perform the process of calculating the
address information for the second area A2 if the starting or
end position of the first area Al is not aligned in units of
clusters. In this case, the address information for the second
area A2 is calculated only when detection is performed as
shown in FIGS. 25A, 26 A, and 27A, among FIGS. 24, 25A,
26A, and 27A.

Now, the operation of calculating the address information
for the second area A2 will be described in detail with refer-
ence to FIGS. 25A, 26A, and 27A.

Firstofall, if the first area A1 to be written is designated by
a write command, as shown in FIG. 25A, the dummy write
area calculation unit 520 determines that the address infor-
mation for the second area A2 is the address information for
the first and second block addresses, which is obtained by
adding the first logical block address to a remainder of the size
information when divided by a cluster unit (CP) size and
subtracting 1 from the first logical block address obtained by
adding the size information to the logical block address LBA
designated by the write command.

For example, if (LBA, SIZE) information included in the
write command is (1000, 20) and the cluster unit size is 8
sectors, CP is 8. In this case, LBA 1020 having a value of
(LBA+SIZE) is the first logical block address, which is the
start address of the second area A2. Also, a remainder of the

US 9,063,659 B2

15
size information of 20 when divided by the cluster unit (CP)
size of 8 is 4, and therefore the second logical block address,
which is the end address of the second area A2, is LBA 1023,
which is an LBA (1020+4-1). That is, the address informa-
tion for the second area A2 is LBA 1020 through LBA 1023.

Next, if the first area Al to be written is designated by the
write command as shown in FIG. 26 A, the dummy write area
calculation unit 520 obtains a remainder X1 of the logical
block address LBA designated by the write command when
divided by the cluster unit (CP) size, determines the starting
address of the second area A2 as having an (LBA-X1) value,
and determines the end address of the second area A2 as
having an (LBA-1) value.

For example, if (LBA, SIZE) information included in the
write command is (1004, 20) and the cluster unit size is 8
sectors, CP is 8. In this case, a remainder X1 of 1004 when
divided by 8 is 4. Accordingly, the starting address of the
second area A2 is 1000, which is (1004-4), and the end
address of the second area A2 is 1003, which is (1004-1).
Therefore, the address information for the second area A2 is
LBA 1000 through LBA 1003.

Next, if the first area Al to be written is designated by a
write command, as shown in FIG. 27 A, the dummy write area
calculation unit 520 calculates address information for two
second areas A2' and A2". That is, the dummy write area
calculation unit 520 obtains a remainder X1 of the logical
block address LBA designated by the write command when
divided by the cluster unit (CP) size, determines the starting
address of the second area A2' as having an (LBA-X1) value,
and determines the end address of the second area A2' as
having an (LBA-1) value.

Also, a value obtained by adding SIZE information to the
logical block address LBA designated by the write command
may be determined as the starting address of the second area
A2", and a value obtained by adding the starting address of the
second area A2" to a remainder of the (SIZE+X1) value when
divided by the cluster unit (CP) size and subtracting 1 may be
determined as the end address of the second area A2".

For example, if (LBA, SIZE) information included in the
write command is (1004, 16) and the cluster unit size is 8
sectors, CP is 8. In this case, a remainder X1 of 1004 when
divided by 8 is 4. Accordingly, the starting address of the
second area A2 is 1000, which is (1004-4), and the end
address of the second area A2' is 1003, which is (1004-1).
Therefore, the address information for the second area A2' is
LBA 1000 through .LBA 1003. Moreover, LBA 1020 equal to
(LBA+SIZE) is the first logical block address, which is the
starting address of the second area A2."

Also, the remainder of the (SIZE+X1) value of 20 when
divided by the cluster unit (CP) size of 8 is 4, and therefore the
second logical block address, which is the end address of the
second area A2", is LBA 1023 equal to LBA (1020+4-1).
That is, the address information for the second area A2'is
LBA 1020 through LBA 1023.

The above-described dummy write area calculation unit
520 is able to calculate the address information for the second
area not included in the first area within the clusters corre-
sponding to the first area designated by the write command
based on the detection result of the cluster-based alignment
detection unit 510 in the above-mentioned manner.

Next, the address mapping information searching unit 530
determines whether or not the address for the second area
calculated by the dummy write area calculation unit 520
exists in the address mapping information 470-1 stored in the
RAM 470. For reference, if the address for the second area
calculated by the dummy write area calculation unit 520
exists in the address mapping information 470-1, this means

10

15

20

25

30

35

40

45

50

55

60

65

16

that valid data is already stored in a physical zone of the disk
12 corresponding to the second area A2.

Ifthe address for the second area calculated by the dummy
write area calculation unit 520 does not exist in the address
mapping information 470-1 stored in the RAM 470, the
dummy pattern generation unit 540 generates a dummy pat-
tern for writing to the second area and adds it to write data of
the RAM 470. If the address for the second area calculated by
the dummy write area calculation unit 520 exists in the
address mapping information 470-1 stored in the RAM 470,
no dummy pattern for the second area is generated. The
dummy pattern may consist of consecutive Os. Also, the
dummy pattern may be configured as a specific pattern which
is distinguished from data.

Next, the write area modifying unit 550 modifies a write
area designated by a write command so as to include the
second area with a dummy pattern. That is, (LBA, SIZE)
information included in the write command is modified to
(LBA!, SIZE") so as to include the first area and the second
area.

When the first area Al to be written is designated by the
write command as shown in FIG. 25A, when the LBA infor-
mation included in the write command is not changed but
only the SIZE information is modified so as to be increased by
the size of the second area A2. For example, if the (LBA,
SIZE) information included in the write command is (1000,
20), the modified (LBA, SIZE') information is (1000, 24).

When the first area Al to be written is designated by the
write command, the LBA information as shown in FIG. 26 A,
the LBA information included in the write command is modi-
fied to be decreased by the size of the second area A2 and the
SIZE information is modified to be increased by the size of
the second area A2. For example, if the (LBA, SIZE) infor-
mation included in the write command is (1004, 20), the
modified (LBA', SIZE") information is (1000, 24).

When the first area Al to be written is designated by the
write command, the LBA information as shown in FIG. 27A,
the LBA information included in the write command is modi-
fied to be decreased by the size of the second area A2' and the
SIZE information is modified to be increased by the size of
the sum (A2'+A2") of the two second areas. For example, if
the (LBA, SIZE) information included in the write command
is (1004, 16), the modified (LBA', SIZE") information is
(1000, 24).

The (LBA' SIZE") information modified by the write area
modifying unit 550 is input into the address conversion pro-
cessor 430-3.

If the address information for the second area A2 is not
calculated based on the detection result of the cluster-based
alignment state, or the address information for the second
area A2 does not exist in the address mapping information,
the (LBA, SIZE) information included in the write command
is not modified but input into the address conversion proces-
sor 430-3.

The address conversion processor 430-3 performs the pro-
cess of converting an LBA for a writing area into physical
location information of the storage medium using a virtual
band and a virtual address, based on the (LBA, SIZE) or
(LBA!, SIZE"), which is information about a writing position,
included in the write command. A detailed configuration of
the address conversion processor 430-3 is illustrated in FIG.
13.

As shown in FIG. 13, the address conversion processor
430-3 may include a first processor 430-3 A, a second proces-
sor 430-3B, and a third processor 430-3C.

The first processor 430-3A performs the operation of
extracting an LBA for a writing position from (LBA, SIZE)

US 9,063,659 B2

17

information included in a write command or modified (LBA',
SIZE') information included in the write command.

The second processor 430-3B performs the operation of
converting the LBA extracted by the first processor 430-3A
into a virtual address. That is, the second processor 430-3B
performs the operation of searching the address mapping
information 470-1 and converting the LBA into a virtual
address.

The second processor 430-3B allocates a virtual band and
a virtual address that correspond to an LBA designated by a
write command as follows.

As shown in FIG. 14, the second processor 430-3B may
include a free queue 131, an allocation queue 132, and a
garbage queue 133. The second processor 430-3B converts an
LBA for a writing position into a virtual address by using the
free queue 131, the allocation queue 132, and the garbage
queue 133.

The second processor 430-3B stores information about the
virtual bands not assigned to a logical band in the free queue
131 in an order complying with a prescribed rule. The free
queue 131 is means that stores information about virtual
bands allocatable to a logical band in response to a command
and is on standby for selection. The free queue 131 may store
classified information about virtual bands allocatable to a
logical band for each physical zone.

The second processor 430-3B stores information about
virtual bands allocated to a logical band in the allocation
queue 132. Specifically, if the virtual bands allocated to a
logical band including an [.LBA for a writing position do not
exist in the address mapping information 470-1 or all virtual
addresses are already allocated and consumed for the virtual
bands allocated to the logical band including the LBA for the
writing position, the second processor 430-3B selects a vir-
tual band on standby in the free queue 131, and allocates the
virtual band to the logical band including the LBA for the
writing position and moves it to the allocation queue 132.

Next, the second processor 430-3B allocates a virtual
address corresponding to the LBA for the writing position
based on the virtual band allocated to the logical band stored
in the allocation queue 132. Concretely, if a new virtual
address is allocated to the logical band including the LBA for
the writing position and stored in the allocation queue 132,
the second processor 430-3B allocates the newly allocated
virtual address corresponding to the first sector of the logical
band to the LBA for the writing position.

If a virtual band already allocated to the logical band
including the LBA for the writing position exits in the allo-
cation queue 132, the second processor 430-3B allocates a
virtual address not allocated for the virtual band to the LBA
for the writing position. For example, a virtual address of the
sector right next to the last accessed sector in the virtual band
can be allocated to the LBA for the writing position.

The second processor 430-3B selects a virtual band, whose
number of virtual addresses invalidated because of data
update exceeds a threshold value, from among the virtual
bands allocated to the logical band, and moves it to the gar-
bage queue 133 (P2).

For example, if the number of virtual bands stored in the
free queue 131 is less than the initially set minimum value, the
second processor 430-3B performs a garbage collection pro-
cess. That is, the second processor 430-3B reads data stored in
the sectors of valid virtual addresses from the virtual bands
stored in the garbage queue 133, and executes rewriting to a
newly allocated virtual address designated by a virtual band.

25

40

45

55

60

18

The second processor 430-3B moves information about the
virtual band that has executed rewriting, among the virtual
bands stored in the garbage queue 133, to the free queue 131
P3).

Next, the third processor 430-3C controls the storage
device to convert the virtual address converted in the second
processor 430-3B into a physical address of the disk and
access the storage medium in accordance with the converted
physical address. That is, the third processor 430-3C gener-
ates a voice coil motor driving control signal for converting
the virtual address into cylinder head sector (CHS) informa-
tion representing the physical location of the disk and access-
ing the disk based on the converted CHS information.

Referring to FIGS. 44 and 4B, when the voice coil motor
driving control signal generated by the third processor 430-
3C is applied to the VCM driver 440, the VCM driver 440
generates a voice coil motor driving current corresponding to
the voice coil motor driving control signal and supplies it to
the voice coil motor 30. Therefore, the magnetic head 16 is
moved to a track position of the disk desired to be accessed,
and performs a data write or read operation corresponding to
a command.

Next, a data writing method according to an embodiment
of the inventive concept executed under the control of the
processor 110 shown in FIGS. 1A and 15 or the processor 430
shown in FIGS. 4A and 4B will be described with reference to
the flowchart of FIG. 15.

The processor 110 determines whether or not a write com-
mand is received from the host device 2000 (S101).

If a write command is received from the host device 2000
as a result of determination in the step 101 (S101), the pro-
cessor 110 detects a cluster-based alignment state for a first
area designated by a write command (s102). Various embodi-
ments for detecting the cluster-based alignment state of the
first area designated by the write command will be described
with reference to FIGS. 16 to 18.

A method for detecting a cluster-based alignment state for
the first area designated by a write command according to an
embodiment of the present invention will be described with
reference to FIG. 16.

The processor 110 determines whether or not the start
position of the first area designated by the write command is
aligned in units of clusters (S201). Specifically, the LBA
value, among the (LBA, SIZE) information included in the
write command, corresponds to multiples of the number of
sectors corresponding to a cluster unit size, the processor 110
may detect the first area as being aligned with the start posi-
tion of a cluster. For example, if the first area designated by
the write command is as shown in FIGS. 24 and 25 A, the start
position of the first area is detected as being aligned in units of
clusters.

If it is determined that the start position of the first area
designated by the write command is aligned in units of clus-
ters as a result of determination in the step 201 (S201), the
processor 110 determines whether or not the end position of
the first area designated by the write command is aligned in
units of clusters (S202). For example, if the remainder of the
(LBA+SIZE-1) value when divided by the number of sectors
corresponding to the cluster unit size, the processor 110 may
detect the first area as being aligned with the end position of
a cluster, based on the (LBA, SIZE) information included in
the write command. In another method, if the (LBA+SIZE)
value corresponds to multiples of the number of sectors cor-
responding to the cluster unit size, the processor 110 may
detect the first area as being aligned with the end position of
a cluster.

US 9,063,659 B2

19

If it is determined that the end position of the first area
designated by the write command is not aligned in units of
clusters as aresult of determination in the step 202 (S202), the
processor 110 detects this as the first state.

If it is determined that the start position of the first area
designated by the write command is not aligned in units of
clusters as a result of determination in the step 201 (S201), or
that the end position of the first area designated by the write
command is aligned in units of clusters as a result of deter-
mination in the step 202 (S202), the processor 110 detects this
as the second state.

In the flowchart of FIG. 16, only when the start position of
the first area designated by the write command is aligned in
units of clusters and the end position of the first area is not
aligned in units of clusters, the first state is detected and a
dummy write pattern is used to perform writing in units of
clusters.

A method for detecting a cluster-based alignment state for
the first area designated by a write command according to
another embodiment of the present invention will be
described with reference to FIG. 17.

The processor 110 determines whether or not the start
position of the first area designated by the write command is
aligned in units of clusters (S301). In the same manner as the
step 201 (S201) explained in FIG. 16, it is determined
whether or not the start position of the first area designated by
the write command is aligned in units of clusters.

If it is determined that the start position of the first area
designated by the write command is aligned in units of clus-
ters as a result of determination in the step 301 (S301), the
processor 110 determines whether or not the end position of
the first area designated by the write command is aligned in
units of clusters (S302). In the same manner as the step 202
(8202) explained in FIG. 16, it is determined whether or not
the end position of the first area designated by the write
command is aligned in units of clusters.

If it is determined that the end position of the first area
designated by the write command is aligned in units of clus-
ters as a result of determination in the step 302 (S302), the
processor 110 detects this as the second state.

If it is determined that the start position of the first area
designated by the write command is not aligned in units of
clusters as a result of determination in the step 301 (S301), or
that the end position of the first area designated by the write
command is not aligned in units of clusters as a result of
determination in the step 302 (S302), the processor 110
detects this as the first state.

A method for detecting a cluster-based alignment state for
the first area designated by a write command according to yet
another embodiment of the present invention will be
described with reference to FIG. 18.

The processor 110 determines whether or not the end posi-
tion of the first area designated by the write command is
aligned in units of clusters (S401). In the same manner as the
step 202 (S202) explained in FIG. 16, it is determined
whether or not the end position of the first area designated by
the write command is aligned in units of clusters.

If it is determined that the end position of the first area
designated by the write command is not aligned in units of
clusters as aresult of determination in the step 401 (S401), the
processor 110 determines whether or not the start position of
the first area designated by the write command is aligned in
units of clusters (S402). In the same manner as the step 201
(S201) explained in FIG. 16, it is determined whether or not
the start position of the first area designated by the write
command is aligned in units of clusters.

10

15

20

25

30

35

40

45

50

55

60

65

20

If it is determined that the start position of the first area
designated by the write command is aligned in units of clus-
ters as a result of determination in the step 402 (S402), the
processor 110 detects this as the first state.

If it is determined that the end position of the first area
designated by the write command is aligned in units of clus-
ters as a result of determination in the step 401 (S401), or that
the start position of the first area designated by the write
command is not aligned in units of clusters as a result of
determination in the step 402 (S402), the processor 110
detects this as the second state.

A process for the step 102 (S102) shown in FIG. 15 can be
performed according to the embodiments shown in FIGS. 16
to 18.

Referring again to FIG. 15, if the first state is detected as a
result of detection in the step 102 (S102), the processor 110
calculates address information for the second area required
for cluster-based alignment (S103).

Specifically, in the first state where the start position of the
first area designated by the write command is aligned in units
of clusters and the end position thereof is not aligned in units
of clusters, the address information for the second area A2 is
determined as address information for the first and second
block addresses, which is obtained by adding the first logical
block address to a remainder of the size information when
divided by a cluster unit (CP) size and subtracting 1 from the
first logical block address obtained by adding the size infor-
mation to the logical block address LBA designated by the
write command.

Next, in the first state where the start position of the first
area designated by the write command is not aligned in units
of clusters and the end position thereof is aligned in units of
clusters, a remainder X1 of the logical block address LBA
designated by the write command when divided by the cluster
unit (CP) size is obtained, the starting address of the second
area A2 is determined as having an (LBA-X1) value, and the
end address of the second area A2 is determined as having an
(LBA-1) value.

Also, in the first state where the start position of the first
area designated by the write command is not aligned in units
of clusters and the end position thereof is not aligned in units
of clusters, two second areas A2' and A2" are required for
cluster-based alignment. Address information for the two
second areas A2' and A2" can be calculated as follows. A
remainder X1 of the logical block address LBA designated by
the write command when divided by the cluster unit (CP) size
is obtained, the starting address of the second area A2' is
determined as having an (LBA-X1) value, and the end
address of the second area A2' is determined as having an
(LBA-1) value. Also, a value obtained by adding SIZE infor-
mation to the logical block address LBA designated by the
write command may be determined as the starting address of
the second area A2", and a value obtained by adding the
starting address of the second area A2" to a remainder of the
(SIZE+X1) value when divided by the cluster unit (CP) size
and subtracting 1 may be determined as the end address ofthe
second area A2".

The processor 110 determines whether or not the address
information for the second area calculated in the step 103
(S103) exists in the address mapping information (S104).
That is, the processor 110 determines whether or not the
address for the second area exists in the address mapping
information 470-1 stored in the RAM 130. For reference, if
the address for the second area A2 exists in the address map-
ping information 470-1, this means that valid data is already
stored in a physical zone of the storage medium 150 corre-
sponding to the second area A2.

US 9,063,659 B2

21

Ifthe address information for the second area does not exist
in the address mapping information as a result of determina-
tion in the step 104 (S104), the processor 110 controls the
storage device so that data is written in the first area in
response to the write command and a dummy pattern is writ-
ten in the second area (S105). Also, the processor 110 gener-
ates mapping information as key information for the logical
block addresses including the first area and the second area in
response to the write command, and adds it to the address
mapping information. Also, the processor 110 integrates
mapping information into key information in an area of
sequentially increasing LBAs and VAs, thereby generating
address mapping information.

A detailed operation for executing the step 105 (S105) will
be described with reference to FIG. 19.

Referring to FIG. 19, the processor 110 generates a dummy
pattern to be written in the second area and adds it to data to
be written (S501). That is, if the address information for the
second area A2 calculated by the dummy write area calcula-
tionunit 520 of FIG. 12 does not exist in the address mapping
information, the processor 110 generates a dummy pattern to
be written in the calculated second area A2 and adds it to data
to be written.

The operation of calculating the second area A2 has been
described in detail in FIG. 12 and FIGS. 25A to 27B, so
redundant description will be avoided.

Also, the processor 110 modifies the write command so as
to include the first area and the second area (S502). That is, the
processor 110 modifies the (LBA, SIZE) information repre-
senting a writing area designated by the write command so as
to include the first area and the second area.

Next, the processor 110 performs a writing operation by
applying the modified write command (S503). That is, it
performs a writing operation by applying the modified (LBA,
SIZE) information. A process for performing a writing opera-
tion in the disk drive of FIGS. 4A and 4B, which is an example
of a data storage device, will be described in detail with
reference to FIG. 20.

The processor 430 determines a logical band LB corre-
sponding to an LBA to be written in response to a received
write command or modified write command (S601). Specifi-
cally, the processor 430 determines a logical band corre-
sponding to an LBA to be written according to a logical band
number including an LBA to be written. For example, if
logical band number 0 is allocated to LBAs 0 to 999, and an
LBA to be written is 75, the logical band corresponding to the
LBA to be written is determined as logical band number 0.

The processor 430 determines whether or not there exists a
virtual band allocated to the logical band determined in the
step 601 (S601) (S602). Specifically, the processor 430
searches the address mapping information 470-1 stored in the
RAM 470 and determines whether or not there already exists
a virtual band allocated to the logical band determined in the
step 601 (S601).

If there exists a virtual band allocated to the logical band
determined in the step 601 (S601) as a result of determination
in the step 602 (S602), the processor 430 determines whether
or not there exists a virtual address VA allocatable in the
allocated virtual band (S603). That is, it is determined
whether or not all virtual addresses allocatable in the allo-
cated virtual band are consumed. If the last virtual address
accessed by the allocated virtual band is the virtual address
corresponding to the last sector included in the virtual band, it
is determined that the virtual addresses are all consumed. For
example, when the size of a virtual band is set to 200 sectors,
and starting virtual addresses 0 to 199 are set for the virtual

40

45

50

55

22

band, if the last virtual address accessed is 199, it is deter-
mined that the virtual addresses in the virtual band are all
consumed.

If there exists no virtual band allocated to the logical band
determined in the step 601 (S601) as a result of determination
in the step 602 (S602), or there exists no virtual address
allocatable in the allocated virtual band as a result of deter-
mination in the step 603 (S603), the processor 430 allocates a
new virtual band to the logical band determined in the step
601 (S601) based on the physical zone (S604). That is, the
processor 430 may allocate a virtual band not allocated to
other logical bands, among the virtual bands included in the
physical zone corresponding to the logical band including the
LBA to be written, to the logical band including the LBA to be
written. Next, the processor 430 allocates a virtual address VA
corresponding to the LBA to be written based on the allocated
virtual band (S605). Specifically, if a new virtual band is
allocated by the step 604 (S604), the processor 430 allocates
a starting virtual address representing the first sector of the
newly allocated virtual band to the LBA designated by a
command. Also, if there exists a virtual address allocatable to
an LBA in a virtual band already allocated to a logical band,
the processor 430 may allocate the next virtual address sub-
sequent to the last virtual address accessed by the virtual band
to an LBA designated by a command. The processor 430
generates address mapping information by integrating map-
ping information into key information in an area of sequen-
tially increasing LBAs and VAs.

Next, the processor 430 generates the virtual address allo-
cated in the step 605 (S605) into cylinder head sector (CHS)
information corresponding to the physical access location
information of the disk 12.

Next, the processor 430 executes a seek operation based on
the CHS information corresponding to the physical access
location information converted in the step 606 (S606) (S607).

Specifically, the processor 430 generates a voice coil motor
driving control signal for moving the magnetic head 16 to a
target track position of the disk 12 based on the converted
CHS information. Referring to FIGS. 4A and 4B, when the
thus-generated voice coil motor driving control signal is
applied to the VCM driver 440, the VCM driver 440 generates
a voice coil motor driving current corresponding to the voice
coil motor driving control signal and supplies it to the voice
coil motor 30. Therefore, the magnetic head 16 is moved to a
track and sector position of the disk desired to be accessed.

After finishing the seek operation of the step 607 (S607),
the processor 430 performs the operation of writing data or a
dummy pattern in the sector position corresponding to a VA of
the disk 12 (S608). As explained above, the processor 430
performs the operation of writing data in response to the write
command in the first area and writing a dummy pattern in the
second area.

By the above-described operation, a modified write com-
mand can be executed on the disk drive according to the step
503 (S503) shown in FIG. 19.

Referring again to FIG. 15, if the second state is detected as
a result of detection in the step 102 (S102), or the address
information of the second area exists in the address mapping
information as a result of determination in the step 104
(S104), the processor 110 controls the storage medium inter-
face 140 so as to write data in response to the write command
only in the first area designated by the write command (S106).
That is, in this case, a dummy write operation for cluster-
based alignment is not performed.

Also, when the operation according to the flowchart shown
in FIG. 15 is performed, writing is performed on the storage
medium 150 as follows.

US 9,063,659 B2

23

If the first area A1 to be written by the write command is
designated as shown in FIG. 25A and detected as the first
state, and the address information of the second area A2 does
not exist in the address mapping information, data received in
response to the write command is written in the first area A1,
and a dummy pattern is written in the shaded second area A2,
as shown in FIG. 25B.

If the first area A1 to be written by the write command is
designated as shown in FIG. 26A and detected as the first
state, and the address information of the second area A2 does
not exist in the address mapping information, data received in
response to the write command is written in the first area A1,
and a dummy pattern is written in the shaded second area A2,
as shown in FIG. 26B.

If the first area A1 to be written by the write command is
designated as shown in FIG. 27A and detected as the first
state, and the address information of the second area A2 and
A2" does not exist in the address mapping information, data
received in response to the write command is written in the
first area A1, and a dummy pattern is written in the shaded
second area A2' and A2", as shown in FIG. 27B.

Next, a method for managing cluster alignment in a write
operation via a network according to an embodiment of the
inventive concept will be described.

First of all, a network system that performs the method for
managing cluster alignment in a write operation via a network
will be described with reference to FIG. 29.

As shown in FIG. 29, the network system according to an
embodiment of the inventive concept includes a program
provision terminal 610, a network 620, a host PC 630, and a
storage device 640.

The network 620 may be implemented as a communication
network such as the internet. Obviously, the network 620 may
be implemented as a wireless communication network, as
well as a wired communication network.

The program provision terminal 610 stores a cluster align-
ment management program for performing the operation
according to the flowcharts shown in FIGS. 15 to 20.

The program provision terminal 610 executes a process for
transmitting the cluster alignment management program to
the host PC 630 in response to a program transmission request
from the host PC 630 connected via the network 620.

The host PC 630 is provided with hardware and software
which is capable of connecting to the program provision
terminal 610 viathe network 620, requesting the transmission
of'the cluster alignment management program, and executing
the operation of downloading the requested cluster alignment
management program from the program provision terminal
610.

Also, the host PC 630 allows the method for managing
cluster alignment in a write operation via a network according
to an embodiment of the inventive concept based on the
method shown in FIGS. 15 to 20 to be executed for the storage
medium 640 by the cluster alignment management program
downloaded from the program provision terminal 610.

Then, the method for managing cluster alignment in a write
operation via a network according to an embodiment of the
inventive concept will be described with reference to the
flowchart of FIG. 30.

First of all, the host PC 630 using the storage device 640
such as a disk drive connects to the program provision termi-
nal 610 via the network 620 (S701).

After connecting to the program provision terminal 610,
the host PC 630 transmits information requesting the trans-
mission of the cluster alignment management program to the
program provision terminal 610 (S702).

10

15

20

25

30

35

40

45

50

55

60

65

24

Then, the program provision terminal 610 transmits the
requested cluster alignment management program to the host
PC 630, so that the host PC 630 downloads the cluster align-
ment management program (S703).

Next, the host PC 630 allows the downloaded cluster align-
ment management program to be executed on the storage
device (S704). By executing the cluster alignment manage-
ment program on the storage device, the method according to
FIGS. 15 to 20 can be performed.

When the disk drive using dynamic address conversion
performs four write operations in which (LBA, SIZE) infor-
mation included in a write command is set to (80, 1), (88, 1),
(96, 1), and (104, 1) in an area having a cluster unit size of 8
sectors by applying the present invention, the state of virtual
addresses mapped to LBAs in virtual band number 0 is as
illustrated in FIG. 28A.

Since the cluster unit size is 8 sectors, writing is performed
in units of 8 sectors for a write command for writing a single
sector, as shown in FIG. 28A.. If 1 track consists of 20 sectors,
a writing operation is performed in at least two tracks.

Also, when the writing operation is performed as above,
the LBA sequentially increases from LBA 80 to LBA 111,
and the corresponding virtual address sequentially increases
from VA 0 to VA 31. Accordingly, within the range of LBA 80
to LBA 111, mapping information of the VAs corresponding
to the LBAs can be represented as address mapping informa-
tion.

When the disk drive using dynamic address conversion
performs four write operations in which (LBA, SIZE) infor-
mation included in a write command is set to (80, 1), (88, 1),
(96, 1), and (104, 1) in an area having a cluster unit size of 8
sectors without applying the present invention, the state of
virtual addresses mapped to L BAs in virtual band number 0 is
as illustrated in FIG. 28B. If 1 track consists of 20 sectors, a
writing operation is performed in at least one track.

Because writing is executed only for the sectors corre-
sponding to the respective LBAs designated by the write
command, the state of the virtual addresses mapped to the
LBAs in virtual band number 0 is as illustrated in FIG. 28B.
Also, mapping information of the VAs addresses correspond-
ing to the LBAs according to the write operation is repre-
sented as four address mapping information.

An embodiment may be a data writing method comprising
the steps of: detecting an initially set storage unit alignment
state for a first area designated by a write command; calcu-
lating address information for a second area not included in
the first area within the units of storage corresponding to the
first area based on the detection result; and if the calculated
address information for the second area does not exist in
address mapping information, writing data in response to the
write command in the first area and writing a dummy pattern
in the second area. An embodiment may also include wherein,
if the start position of the first area is aligned in units of
storage, and the end position of the first area is not aligned in
units of storage, the step of calculating the address informa-
tion for the second area is performed. An embodiment may
also include wherein the address information for the second
area is determined as the address information for the first and
second block addresses, which is obtained by adding the first
logical block address to a remainder of the size information
when divided by a storage unit size and subtracting 1 from the
first logical block address obtained by adding the size infor-
mation to the logical block address designated by the write
command.

An embodiment may also include wherein, if the start
position of the first area or the end position of the first area is
not aligned in units of storage, the step of calculating the

US 9,063,659 B2

25

address information for the second area is performed. An
embodiment may also include wherein the address informa-
tion for the second area is determined as the address informa-
tion for the logical block addresses including the next logical
block address subsequent to the logical bock address for the
end position of the first area and the logical block address for
the end position of a storage unit area corresponding to the
first area. An embodiment may also include wherein the
address mapping information comprises information for con-
verting a logical block address received from a host device
into a physical address of a storage medium so that writing is
sequentially performed in one direction in a virtual band
corresponding to a physical zone of the storage medium.

An embodiment may also include wherein, if the calcu-
lated address information for the second area is not allocated
to the address mapping information, the logical block address
information and size information included in the write com-
mand is modified so as to include the first area and the second
area, and a dummy pattern is added to data to be written in
response to the write command so that data received from the
host device is written in the first area in response to the write
command and a dummy pattern is written in the second area.

Another embodiment may include a storage device com-
prising: a storage medium; a storage medium interface for
accessing the storage medium to write or read data; a memory
device for storing address mapping information; and a pro-
cessor for controlling the storage medium interface to write
data to the storage medium or read data from the storage
medium, wherein the processor executes a write operation on
a modified area designated by a write command or modified
datato be written so that data is written on the storage medium
in units of at least one cluster based on the address mapping
information. An embodiment may also include wherein the
processor controls the storage medium interface to modify
the area designated by the write command and write a dummy
pattern in the area modified from the area designated by the
write command so that a data writing area on the storage
medium is aligned in units of at least one cluster. An embodi-
ment may also include wherein the processor comprises: a
cluster-based alignment detection unit that detects a cluster-
based alignment state for the first area designated by the write
command; a dummy write area calculation unit that calcu-
lates address information for a second area not included in the
first area within the clusters corresponding to the first area
based on the detection result of the cluster-based alignment
detection unit; an address mapping information searching
unit that determines whether or not the address information
for the second area exists in the address mapping information
stored in the memory device; a dummy pattern generation
unit that generates a dummy pattern to be written in the
second area; and a write area modifying unit that modifies a
writing area designated by the write command so as to include
the first area and the second area, wherein the storage medium
interface is controlled so that data is written in the first area in
response to the write command and a dummy pattern is writ-
ten in the second area.

The present invention is applicable to storage devices using
a variety of write methods, as well as a disk drive using a
shingle write method.

The present invention can be realized as a method, an
apparatus, a system and so on. When the present invention is
realized as software, the members of the present invention are
code segments which execute necessary operations. Pro-
grams or code segments may be stored in a processor readable
medium. The processor readable medium may be any
medium which can store or transmit information, such as an
electronic circuit, a semiconductor memory device,a ROM, a

10

20

25

30

35

40

45

50

55

60

65

26
flash memory, an EROM (Erasable ROM), a floppy disc, an
optical disc, a hard disc, or the like.

Although the invention has been described with reference
to particular embodiments, it will be apparent to one of ordi-
nary skill in the art that modifications to the described
embodiments may be made without departing from the spirit
and scope of the invention. Therefore, it is obvious that the
present invention is not restricted to the specific structures or
arrangements shown or described in this specification.

What is claimed is:
1. A method comprising:
receiving a write request from a host containing host data
for writing to a target location of a data storage medium,
atarget location comprising at least one cluster, a cluster
having multiple sequentially-numbered data storage
addresses of the data storage medium;
writing the at least one cluster with write data including
host data and dummy data pursuant to the write request,
the at least one cluster including a headmost storage
address at a headmost boundary ofthe at least one cluster
and a terminal storage address at a terminal boundary of
the at least one cluster, dummy data being arbitrary data
written to fill data storage addresses in the target location
not written by host data, the writing including:
determining a segment of the at least one cluster to be
written by the host data and add the host data to the
write data;
adding the dummy data for writing to one or more first
consecutive storage addresses of the at least one clus-
ter to the write data when the one or more first con-
secutive storage addresses are not to be written by
host data and when existing data is not already stored
in the one or more first consecutive storage addresses,
the one or more first consecutive storage addresses
including the headmost storage address of the at least
one cluster; and
adding the dummy data for writing to one or more last
consecutive storage addresses of the at least one clus-
ter to the write data when the one or more last con-
secutive storage addresses are not to be written by
host data and when existing data is not already stored
in the one or more last consecutive storage addresses,
the one or more last consecutive storage addresses
including the terminal storage address of the at least
one cluster; and
writing the write data to the at least one cluster.
2. The method of claim 1, further comprising:
determining whether the host data will completely fill the
target location; and
calculating the data storage addresses of the target location
which will not be filled by the host data when the host
data will not completely fill the target location.
3. The method of claim 2, further comprising:
checking an address map to determine whether existing
data is already stored in the data storage addresses of the
target location which will not be filled by the host data,
the address map including a database of information
regarding the storage state of data storage locations of
the data storage medium; and
not writing dummy data to data storage addresses of the
target location which contain existing data.
4. The method of claim 3, further comprising:
updating the address map to reflect the written host data;
and
updating the address map to reflect the dummy data when
dummy data is written to the target location.

US 9,063,659 B2

27

5. The method of claim 3 further comprising:
checking the address map including the database of infor-
mation, the database of information including:
a first storage address of a set of sequentially-numbered
data storage addresses of valid data; and
avalue representing the number of sequential addresses
in the set of sequentially-numbered data storage
addresses.
6. The method of claim 2, further comprising:
determining whether the host data will completely fill the
at least one cluster of the target location via:
determining whether a first storage address of the host
data from the write request is aligned to the headmost
boundary of the at least one cluster;
determining whether a last storage address of the host
data from the write request is aligned to the terminal
boundary of the at least one cluster;
calculating the data storage addresses of the target location
which will not be filled by the host data when the host
data will not completely fill the at least one cluster of the
target location via:
calculating storage addresses between the headmost
storage address of the at least one cluster and the first
storage address of the host data; and
calculating storage addresses between the terminal stor-
age address of the at least one cluster and the last
storage address of the host data.
7. The method of claim 1:
further comprising receiving the write request for writing
to the target location of the data storage medium, the data
storage medium including a disc storage medium; and
the writing at least one cluster of the target location with
host data and dummy data pursuant to the write request
includes writing the host data and dummy data to the
disc storage medium in a shingled writing format such
that writing of a first track overlaps at least a portion of
a second track.
8. An apparatus comprising:
a data storage medium;
a processor configured to:
receive a write request from a host containing host data
for writing to a target location of the data storage
medium, a target location including one or more clus-
ters, a cluster including multiple sequentially-num-
bered data storage addresses of the data storage
medium;
determine whether the host data will completely fill the
clusters of the target location;
when the host data will not completely fill the clusters of
the target location:
calculate data storage addresses in the target location
which will not be filled by the host data;
write at least one cluster of the target location with
host data and dummy data pursuant to the write
request, the at least one cluster including a first
storage address at an initial boundary of the at least
one cluster and a last storage address at a final
boundary of the at least one cluster, dummy data
being arbitrary data written to fill the data storage
addresses in the target location not written by host
data, the write including:
write the dummy data to one or more first consecu-
tive storage addresses of the at least one cluster
when the one or more first consecutive storage
addresses are not to be written by host data and
when host data does not already exist in the one
or more first consecutive storage addresses, the

20

40

45

50

55

28

one or more first consecutive storage addresses
including the first storage address of the at least
one cluster; and

write the dummy data to one or more last consecu-
tive storage addresses of the at least one cluster
when the one or more last consecutive storage
addresses are not to be written by host data and
when host data does not already exist in the one
or more last consecutive storage addresses, the
one or more last consecutive storage addresses
including the last storage address of the at least
one cluster.

9. The apparatus of claim 8, further comprising a network
interface, and the processor is configured to retrieve a set of
instructions over the network interface that, when executed
by the processor, control the operation of the apparatus.

10. The apparatus of claim 8, further comprising the pro-
cessor configured to:

check an address map to determine whether existing data is
already stored in the data storage addresses of the target
location which will not be filled by the host data, the
address map comprising a database of information
regarding the storage state of data storage locations of
the data storage medium; and

not write dummy data to data storage addresses of the
target location which contain existing data.

11. The apparatus of claim 10, further comprising the pro-

cessor configured to:
update the address map to reflect the written host data; and
update the address map to reflect the dummy data when
dummy data is written to the target location.
12. The apparatus of claim 10:
the database of information of the address map includes:
a first storage address of a set of sequentially-numbered
data storage addresses of current data; and

avalue representing the number of sequential addresses
in the set of sequentially-numbered data storage
addresses.
13. The apparatus of claim 8:
the data storage medium includes a disc storage medium;
and
the processor is configured to write at the least one cluster
of the target location with host data and dummy data
pursuant to the write request in a shingled manner such
that writing a second track overlaps at least a portion of
a first track.
14. An apparatus comprising:
a memory device storing instructions that when executed
by a computer cause the computer to perform a method
comprising:
receiving a write request from a host containing host
data for writing to a target location of a data storage
medium, a target location comprising at least one
cluster, a cluster being multiple sequentially-num-
bered data storage addresses for data sectors of the
data storage medium;

writing the at least one cluster with write data including
host data and dummy data pursuant to the write
request, the at least one cluster including a first stor-
age address for a data sector at an initial boundary of
the at least one cluster and a last storage address for a
data sector at a final boundary of the at least one
cluster, dummy data being arbitrary data written to fill
data storage addresses in the target location not writ-
ten by host data, the writing including:

US 9,063,659 B2

29 30
determining a segment of the at least one cluster to be 17. The apparatus of claim 16:
occupied by the host data and add the host data to the the database of information of the address map includes:
write data; a first storage address of a set of sequentially-numbered

data storage addresses of valid data; and
avalue representing the number of sequential addresses
in the set of sequentially-numbered data storage
addresses.
18. The apparatus of claim 15, the method further compris-
ing
determining whether the host data will completely fill the
at least one cluster of the target location via:
determining whether a first storage address of the host
data from the write request is aligned to the initial
boundary of the at least one cluster;
determining whether a last storage address of the host
data from the write request is aligned to the final
boundary of the at least one cluster;
calculating the data storage addresses of the target location
which will not be filled by the host data when the host
data will not completely fill the at least one cluster of the
target location via:
calculating storage addresses between the initial storage
address of the at least one cluster and the first storage
address of the host data; and
calculating storage addresses between the final storage
address of the at least one cluster and the last storage
address of the host data.
19. The apparatus of claim 14:
the method further comprises receiving the write request
30 for writing to the target location of the data storage
medium, the data storage medium including a disc stor-
age medium; and
the writing at least one cluster of the target location with
host data and dummy data pursuant to the write request
comprises writing the host data and dummy data to the
disc storage medium in a shingled writing format such
that writing of a first track overlaps at least a portion of
a second track.

adding the dummy data for writing to one or more first
consecutive storage addresses of the at least one clus- 35
ter to the write data when the one or more first con-
secutive storage addresses are not to be written by
host data and when existing data is not already stored
in the one or more first consecutive storage addresses,
the one or more first consecutive storage addresses 10
including the first storage address of the at least one
cluster;
adding the dummy data for writing to one or more last
consecutive storage addresses of the at least one clus-
ter to the write data when the one or more last con- 15
secutive storage addresses are not to be written by
host data and when existing data is not already stored
in the one or more last consecutive storage addresses,
the one or more last consecutive storage addresses
including the last storage address of the at least one 20
cluster; and
writing the write data to the at least one cluster.
15. The apparatus of claim 14, the method further compris-
ing:
determining whether the host data will completely fill the 25
target location; and
calculating the data storage addresses of the target location
which will not be filled by the host data when the host
data will not completely fill the target location.
16. The apparatus of claim 15, the method further compris-
ing:
checking an address map to determine whether existing
data is already stored in the data storage addresses of the
target location which will not be filled by the host data,
the address map including a database of information 35
regarding the storage state of data storage locations of
the data storage medium; and
not writing dummy data to data storage addresses of the
target location which contain existing data. L

